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Lateral and normal forces between patterned substrates induced by nematic fluctuations

F. Karimi Pour Haddadan* and S. Dietrich
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart, Germany

and Institut für Theoretische und Angewandte Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
�Received 8 December 2005; published 17 May 2006�

We consider a nematic liquid crystal confined by two parallel flat substrates whose anchoring conditions
vary periodically in one lateral direction. Within the Gaussian approximation, we study the effective forces
between the patterned substrates induced by the thermal fluctuations of the nematic director. The shear force
oscillates as a function of the lateral shift between the patterns on the lower and the upper substrates. We
compare the strength of this fluctuation-induced lateral force with the lateral van der Waals force arising from
chemically structured adsorbed monolayers. The fluctuation-induced force in the normal direction is either
repulsive or attractive, depending on the model parameters.
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I. INTRODUCTION

Liquid crystals are characterized by large thermal fluctua-
tions in their local orientational order arising from collective
alignment of the long axis of their constituent molecules �1�.
Due to such soft anisotropy, liquid crystals tend to respond
easily to external forces. Confining geometries such as thin
films, on which most applications of liquid crystals are
based, change the fluctuation spectrum. This can cause not
only structural changes �2,3� but also leads to fluctuation-
induced effective forces between the substrates �4�, also
known as thermodynamic Casimir effect. In correlated fluids
such as nematic liquid crystals this Casimir force exhibits a
universal power-law decay as a function of the separation
between the substrates �5�. However, this behavior is modi-
fied in the presence of other characteristic scales in the sys-
tem �6–8�. In the case that the substrates are laterally modu-
lated, discrete lateral modes of thermal fluctuations are also
excited. Under such conditions, in addition to the forces act-
ing perpendicularly to the substrates, effective lateral forces
arise �9,10� with potentially interesting technological appli-
cations.

We study the influence of anchoring conditions, which
vary periodically in one lateral direction, on the fluctuations
of a uniformly ordered nematic liquid crystal characterized
by a director field. Due to the infinite correlation length for
the orientational degrees of freedom within this phase with a
uniform mean director these fluctuations are the dominant
ones. Obviously, the periodicity � of the substrate pattern
gives rise to an oscillatory behavior for the lateral force as a
function of the lateral shift � between the substrates. For
small inhomogeneities the lateral force is proportional to
sin�2�� /��. �The analysis of nonperiodic patterns would pro-
vide an understanding of nematic phases exposed to chemi-
cally disordered substrates.� The present study actually ex-
tends our previous work �11� where we considered the case
in which only one of two confining substrates exhibits a

*Present address: Institute for Studies in Theoretical Physics and
Mathematics �IPM�, School of Physics, P.O. Box 19395-5531, Te-

hran, Iran.

1539-3755/2006/73�5�/051708�8� 051708
chemical pattern so that there are no lateral forces. Here, in
addition to the fluctuation-induced lateral forces, we calcu-
late the lateral force between the patterned substrates across
the vacuum, i.e., the background van der Waals force acting
parallel to the substrates. This background force is generated
by the necessary chemical modulations providing the later-
ally varying anchoring strengths.

In Sec. II our model and the theoretical formalism are
specified. In Sec. III A the fluctuation-induced lateral force is
obtained. In Sec. III B we calculate the lateral van der Waals
force between the patterned substrates. The results for the
fluctuation-induced normal force are presented in Sec. IV
and finally Sec. V summarizes our results.

II. SYSTEM AND FORMALISM

We consider a nematic liquid crystal confined by two flat
but chemically patterned substrates at a separation d. The
patterns on both substrates consist of the same periodic
stripes of anchoring energies per area Wa and Wb along the x
direction but are shifted relative to each other by the length �
�see Fig. 1�. The substrates are translationally invariant in the
y direction. The stripes are considered to vary with respect to
the strength of homeotropic anchoring so that the mean ori-
entation of the director n is spatially homogeneous but the
thermal fluctuations vary laterally giving rise to effective lat-
eral forces.

Based on the bulk structural Frank free energy �1� given
by

Fb�n� =
1

2
�

V

d3x�K1�� · n�2 + K2�n · � � n�2

+ K3�n � � � n�2� , �1�

where V is the nematic volume, K1, K2, and K3 are the splay,
the twist, and the bend elastic constants, respectively, the free
energy of Gaussian fluctuations in the one-constant approxi-

mation reads
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Fb��1,�2� = �
i=1

2
K

2
�
V

d3x���i�x,z��2, �2�

where �i, i=1,2, is either of the two independent compo-
nents of the fluctuating part ��=n−n0 of the director n, K
=K1=K2=K3 is the effective elastic constant, and x= �x ,y�
are the lateral components of the Cartesian coordinates r
= �x ,z�.

To describe the interaction of the liquid crystal and the
substrates, we employ the Rapini-Papoular surface free en-
ergy given by

Fs�n� = −
1

2
�

S

d2xWz=0�x��n · ẑ�2

−
1

2
�

S

d2xWz=d�x��n · ẑ�2

= Fs
z=0 + Fs

z=d, �3�

where W is the anchoring energy per area S and ẑ is the unit
vector in z direction. Here Wz=0�x�=Waa�x�+Wb�1−a�x�� at
the lower substrate located at z=0 and Wz=d�x�=Wab�x�
+Wb�1−b�x�� at the upper substrate located at z=d where

a�x� = �
k=−�

�

��x − k� +
�

4
���k� +

�

4
− x� �4�

and

b�x� = a�x + �� �5�

describe the stripe modulations at the lower and the upper
substrates, respectively, ��x� is the Heaviside step function,

FIG. 1. The geometry of the nematic cell with patterned sub-
strates. The patterns on both substrates are the same but shifted
relative to each other. The patterns consist of periodic stripes of
anchoring energies per area Wa and Wb with the widths �a and �b,
respectively. The wavelength of the periodicity is denoted as �
=�a+�b and the lateral shift between the origins of the patterns on
the top and the bottom substrate is denoted by �. Anchoring at both
boundaries is homeotropic everywhere so that the thermal average
of the director field n0= ẑ is spatially homogeneous.
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and � is the periodicity. The stripes have the same width �a
=�b=� /2 and are separated by sharp chemical steps. The
functions a�x� and b�x� equal one at the regions character-
ized by Wa and zero elsewhere at the lower and the upper
substrates, respectively. Thus the surface free energy of the
Gaussian fluctuations given by Fs��1 ,�2�=Fs��1�+Fs��2�
reads

Fs
z=0��� =

1

2	Wa�
S

d2x���x,z = 0��2a�x�

+ Wb�
S

d2x���x,z = 0��2�1 − a�x��
 �6�

at the lower substrate and

Fs
z=d��� =

1

2	Wa�
S

d2x���x,z = d��2b�x�

+ Wb�
S

d2x���x,z = d��2�1 − b�x��
 �7�

at the upper substrate.
Minimization of total free energy F=Fb��1 ,�2�

+Fs
z=0��1 ,�2�+Fs

z=d��1 ,�2� leads to two boundary conditions:

− K�z��x,z� + Wa��x,z�a�x� + Wb��x,z��1 − a�x�� = 0,

z = 0, �8a�

K�z��x,z� + Wa��x,z�b�x� + Wb��x,z��1 − b�x�� = 0, z = d ,

�8b�

where � is either �1 or �2.

A. Path integral technique

The normalized �see, cf., after Eq. �9�� partition function
Z of the fluctuating fields �i, i=1,2, subject to the boundary
conditions given by Eqs. �8a� and �8b� can be calculated
within the path integral approach �see Ref. �11� and refer-
ences therein�. In the path integral the boundary conditions
can be implemented by delta functions localized at the sub-
strates which, in turn, can be written as integral representa-
tions by introducing two auxiliary fields �	 ;	=1,2 local-
ized at z=0 and z=d, respectively �12,13�. After performing
the corresponding Gaussian integrals over �i, i=1,2, the path
integral reduces to Z=Z 0

−1��	=1
2 D�	e−Heff��	� where Heff

=�	,
=1
2 �d2x�d2x��	�x�M	,
�x ,x���
�x�� and Z0 is the

bulk partition function. This is a Gaussian functional integral
over the auxiliary fields with a matrix kernel M, so that ob-
taining the result for Z reduces to calculating �det M�−1/2. For
the geometry considered here, the matrix M is found to have
the following matrix elements M	,
 ,	 ,
=1,2:

M11�x,x�� = 
�	1 +
�b − �a

�a
a�x�
	1 +

�b − �a

�a
a�x��


+
�b��b − �a�

�a
�a�x� − a�x����z − �b

2�z
2�

�G�x − x�,z − z��� ,
z=z�=0
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M12�x,x�� = 
	1 +
�b − �a

�a
�a�x�� + b�x�� − 2�b�z�

−
�b��b − �a�

�a
�a�x�� + b�x���z�

+ ��b − �a

�a
�2

a�x��b�x� + �b
2�z�

2 

�G�x − x�,z − z���z=d,z�=0,

M21�x,x�� = 
	1 +
�b − �a

�a
�a�x� + b�x��� − 2�b�z

−
�b��b − �a�

�a
�a�x� + b�x����z

+ ��b − �a

�a
�2

a�x�b�x�� + �b
2�z

2

�G�x − x�,z − z���z�=d,z=0,

M22�x,x�� = 
�	1 +
�b − �a

�a
b�x�
	1 +

�b − �a

�a
b�x��


+
�b��b − �a�

�a
�b�x�� − b�x���z − �b

2�z
2�

�G�x − x�,z − z���z=z�=d, �9�

where �a�b�=K /Wa�b� is the so-called extrapolation length
and G�r ,r��=kBT / �4�K �r−r� � � is the two-point correlation
function of the scalar field �i in the bulk with its statistical
weight given by Z 0

−1 exp� K
2kBT�Vd3x�i�x ,z��2�i�x ,z�� where

kBT is the thermal energy.
In terms of the partition function Z, the free energy is

given by F=−kBT ln Z= �kBT /2�ln det M. We note that nor-
malizing Z by Z0 amounts to subtracting the bulk free energy.
The remaining parts of the free energy F include only the
surface free energy and the finite-size contribution. The sur-
face free energy depends neither on d nor on �, so the
fluctuation-induced force F=−�F reads

F = −
kBT

2
Tr�M−1 � M� , �10�

where � is either �� or �d corresponding to lateral or normal
displacements giving rise to lateral or normal forces, respec-
tively.

B. Periodic modulation

The matrix kernel M is a functional of the patterning
function a�x� on the substrates and therefore calculation of
the inverse of M is nontrivial. However, in systems with
in-plane symmetries one may proceed by a lateral Fourier
transformation with respect to the lateral coordinates x
= �x ,y�. In Ref. �14�, it is shown how the electrodynamic
Casimir force can be calculated for a periodically modulated
substrate �see also Refs. �11,15��. In this reference, the lateral

periodicity is used to transform the matrix M to a block-
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diagonal form in Fourier space �p ,q� in which M�p ,q�
=��d2xd2x�M�x ,x��eip·xeiq·x�. Similarly, also here the matrix
elements of the block Mj = �Mj,kl� with Mj,kl�py ,qy�
=2���py +qy�Bkl� 2�j

L , py�, j=1, . . . ,N=L /�, are given by

Bkl�2� j

L
,py� = Nm=k−l�2�j

L
+

2� l

�
,py� �11�

for l ,k�Z, where L is the lateral extension of the system in
the x direction and the Nm are �2�2� matrices providing the
following decomposition of the matrix M:

M�p,q� = �2��2��py + qy� �
m=−�

�

Nm�px,py�

� ��px + qx +
2�m

�
� . �12�

This is due to the uniaxial symmetry of our system which is
periodic along the x direction and translationally invariant
along the y direction.

However, it is interesting to note that the matrix
M�x ,x��=M(x−x� ,a�x� ,a�x��) can also be represented, us-
ing a more direct derivation than in Ref. �14�, in a form in
which M is diagonal �16�. In view of the discrete lateral
periodicity along the x direction, it is suitable to express x
and x� as

x = n� + s, x� = n�� + s�, �13�

with n ,n��Z and s, s�� �0,��. Since a�x� is periodic with
wavelength � it follows that a�x�=a�s� and x−x�= �n−n���
+s−s� depends on n and n� only via the difference n−n�.
This property and translational invariance along the y direc-
tion imply the Fourier decomposition

M̂�px,py ;s,s�� = �
n,n�=−�

� � dy� dy� � M�n − n�,y − y�;s,s��

�e−ipx�n−n���e−ipy�y−y��, �14�

where M̂�px , py ;s ,s�� is diagonal. Furthermore, with s, s�
� �0,�� one can form

Ckl�px,py� = �
0

�

ds�
0

�

ds�e2�iks/�M̂�px,py ;s,s��e−2�ils�/�.

�15�

As expected, the different representations of M in terms

of the matrices C or B �C is the Fourier transform of M̂ and

B is the Fourier transform of e−ipxsM̂eipxs�� do not change the
final result for the force �Eq. �10��. Using the thermodynamic
limit L→� leads to a reindexing of the block matrices Mj by
continuous momenta px� �0,2� /��, so that the force is

given by �14�
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F = −
kBTS

2�2 �
0

�

dpy�
0

2�/�

dpxtr„B
−1�px,py� � B�px,py�… .

�16�

Here tr denotes the partial trace with respect to the indices
k , l of the infinite-dimensional matrix B �or C� and we have
with the dimensionless function

051708
taken into account the contribution of both fluctuating com-
ponents of the director field.

In the following we continue with the block-diagonal
form of the matrix kernel M since in this representation the
patterning functions ak and bk are somehow simpler than
their counterparts in the diagonal form of M. Accordingly,

the matrices Nm �Eq. �12�� are given by
Nm = ��m
aa�0� �m

ab�d�
�m

ba�d� �m
bb�0�

� + �m,0�
za

2

2p
−

�b
2p

2

�1 − �bp�2

2p
e−pd

�1 − �bp�2

2p
e−pd zb

2

2p
−

�b
2p

2
�

+
�b − �a

2�a
�m,0� 0 	a0� zb

c

p
− �b� + b0� za

c

p
− �b�
e−pd

	a0� zb
c

p
− �b� + b0� za

c

p
− �b�
e−pd 0 � �17�

for m even, and

Nm =
�b − �a

2�a � amza�1

p
+

1

pm
� am� zb

p
− �b�e−pd + bm� za

pm
− �b�e−pmd

bm� za

p
− �b�e−pd + am� zb

pm
− �b�e−pmd bmzb�1

p
+

1

pm
� � �18�
for m odd, with za�b�=1+
�b−�a

�a
a0�b0�, za�b�

c =1+
�b−�a

2�a
a0�b0�,

pm=��px+2�m /��2+ py
2, p= pm=0, a0=b0=1/2, am=odd

= �−1���m�−1�/2 / �� �m � �, bm=odd=e−2�im�/�am, and

�m
ab�d� = ��b − �a

�a
�2

�
k=−�

�

� ak−mb−k
e−pkd

2pk
, �19�

where the prime at the summation sign indicates that in the
sum the terms with even k are excluded.

III. LATERAL FORCES

A. Fluctuation-induced shear forces

In the limit d
� we find that the contributions from the
elements Bkl �Eqs. �11� and �12�� to the force decrease rap-
idly with increasing absolute values of k , l, so that the ex-
pression for the force �Eq. �16�� converges already at small
orders of M with k , l=−M , . . . ,M. Taking into account only
the elements Bkl �Eq. �11�� for k , l=−1,0 ,1, the asymptotic
behavior of the fluctuation-induced lateral force Flat=−��F
in the limit ��b−�a � /�a�1 is given by

Flat�d 
 ��
kBTS

=
8��b − �a�2

��3�a
2 e−2�d/� sin�2��

�
� f�d/�,�b/��

+ O���b − �a

�a
�3� �20�
f�u,v� =
1

�1 + 2�v�2�
0

�

dxe−ux

�

1 −

1 + 2v�1 − vx�x + � x

2�
�2

�1 + 4�v�

�1 − vx�2 e2ux

1 − �1 + vx

1 − vx
�2

e2ux

.

�21�

The lateral force oscillates as a function of � reflecting the
underlying lateral periodic pattern and its magnitude decays
exponentially as a function of d /�, because f�� ,v���.

For arbitrary values of d, we evaluate the force in Eq. �16�
numerically. Although the matrix B �Eq. �11�� is infinite-
dimensional, the value of the force saturates at some finite
values for k , l. Our numerical results for the fluctuation-
induced lateral force as a function of the shift � for arbitrary
strength of the contrast �b−�a are shown in Fig. 2. The lat-
eral force acts against the increase of the lateral displacement
� in the interval �0,� /2� by being a restoring force and acts
favorably with the increase of � in the interval �� /2 ,�� by
being a pulling force. Therefore the force is antisymmetric
with respect to � /�=0.5. Upon approaching the maximum

misalignment, i.e., � /�=0.5, the restoring force vanishes.
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This implies that the interaction free energy Vlat���
=−�0

�Flat����d�� has its maximum at� /�=0.5 where the op-
posing parts of the substrates face each other and attains its
minimum at �=0. The force is maximal at � /�=0.25 and
0.75 where Vlat exhibits its strongest dependence on � �Fig.
3�. In Fig. 4 we show the decay of Flat as a function of d.
Asymptotically, Flat / �kBTS /�3� vanishes as −0.003
e−2�d/� / �d /�� for �a /�=4, �b /�=8, and � /�=0.25.

We note that due to the assumption �a=�b interchanging
�a and �b leaves the system unchanged �Fig. 1�. Thus the
force must be identical for �a↔�b. While in Eqs. �20� and
�21� this symmetry is explicitly valid up to the second order
in ��b−�a�, the numerical results respect this symmetry fully.
This provides a very useful check of the numerical calcula-
tions.

FIG. 2. The fluctuation-induced lateral force Flat in units of
kBTS /�3 between two periodically patterned substrates at distance d
as a function of the shift � in units of the periodicity � for d /�
=0.01, 0.02, and 0.05 �see Fig. 1�. The anchoring on the stripes in
terms of the extrapolation lengths is taken to be �a /�=4 and �b /�
=8. Flat is antisymmetric around � /�=0.5. There is no restoring
force if the misalignment is maximal, i.e., at � /�=0.5. Flat�0
means that the plates are pulled back towards the preferred align-
ment at �=0; for F�0 the plates are pulled forward towards pre-
ferred alignment at �=�.

FIG. 3. The effective lateral potential Vlat���=−�0
�Flat����d�� in

units of kBTS /�2 between two periodically patterned substrates at
distance d as a function of the shift � in units of the periodicity � for
d /�=0.01, 0.02, and 0.05 and �a /�=4, �b /�=8. For all values of

d /� the inflection points of the potential are at � /�=0.25 and 0.75.
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B. Lateral van der Waals force

Endowing the substrates with the envisaged stripe pat-
terns requires corresponding chemical patterns which in turn
involve at least two different species providing the chemical
contrast. These species do not only interact �differently� with
the nematic liquid crystal in the vicinity of the substrate,
giving rise to two different extrapolation lengths �a and �b,
but also interact across the liquid crystal with each other via
dispersion forces. The later interaction provides a lateral
force as well which adds to the fluctuation-induced lateral
force. Note that such a lateral force due to direct interactions
is the same if the two patterned substrates are separated by
vacuum or by a nematic liquid crystal, as long as the mean
nematic order is not affected by the stripe patterns. The in-
teraction between the uniform nematic and the substrates
contributes to the normal force.

In order to estimate these direct lateral interactions be-
tween the patterned substrates, we consider each substrate to
be covered by a monolayer whose chemical composition var-
ies periodically, alternating between A- and B-particles. This
can be obtained by using patterned self-assembled monolay-
ers of molecules, which are able to control the orientation of
nematic liquid crystals at the substrates �17�. We neglect
nonadditivity aspects of the dispersion forces and consider
pairwise interactions between the patterned monolayers at z
=0 and z=d. Since we consider d to be large compared with
the diameters of the A- and B-particles, we can disregard that
particles forming the monolayers occupy discrete lattice
sites. As pair potentials between the two species we take
Lennard-Jones potentials

uij�r� = 4�ij	��ij

r
�12

− ��ij

r
�6
, i, j = A,B �22�

where A�B�-particles give rise to the extrapolation length

FIG. 4. The fluctuation-induced lateral force Flat in units of
kBTS /�3 between two periodically patterned substrates as a function
of the film thickness d in units of the periodicity �. The anchoring
on the stripes in terms of the extrapolation lengths is taken to be
�a /�=4, �b /�=8, and the lateral shift between the patterns is � /�
=0.25. Asymptotically, Flat / �kBTS /�3� for � /�=0.25 vanishes as
−0.003 e−2�d/� / �d /�� �dashed line�. The variation of Flat for small
values of d /� is shown in the inset for �a /�=4 �circles� and �a /�
=2 �triangles�. The other system parameters remain the same. As
expected the absolute value of the amplitude of the lateral force
increases upon increasing the contrast ��b−�a�.
�a�b�. Since in the present context d
�ij, for the lateral force
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only the attractive part of the pair potentials matters. This
leads to the following expression for the van der Waals po-
tential energy between the two monolayers:

Vlat
vdW��� = − �

S

d2x1�
S

d2x2
E�x1,x2;��

�d2 + �x1 − x2�2�3 �23�

with

E�x1,x2;�� = EAAa�x1�b�x2;��

+ EBA�a�x1� − 2a�x1�b�x2;�� + b�x2;���

+ EBB�1 − a�x1���1 − b�x2;��� �24�

and

Eij = 4�ij�ij
6 �i� j , �25�

where �A�B� is the areal number density of A�B�-particles in
the monolayer forming the stripe �a�b�. Carrying out the in-
tegration over y1 and y2 in Eq. �23�, one obtains

Vlat
vdW��� = −

3�L

8
�

−L/2

L/2

dx1�
−L/2

L/2

dx2
E�x1,x2;��

�d2 + �x1 − x2�2�5/2 ,

�26�

where L is the lateral extension of the system both in the x
and y directions. From this the lateral van der Waals force
Flat

vdW=−��Vlat
vdW��� can be calculated:

Flat
vdW

S
=

E

�5 fvdW��/�,d/�� �27�

with the scaling function

fvdW��/�,d/�� =
15�

8 �
n=−�

� �
n+�/�

n+1/2+�/�

dX1

� �
0

1/2

dX2
X2 − X1

��d/��2 + �X2 − X1�2�7/2 ,

�28�

where E=EAA−2EAB+EBB. The force and the potential as a
function of � /� are shown in Fig. 5. The comparison be-
tween Figs. 2 and 5�a� reveals that the lateral van der Waals
force is practically constant over a wide range of shift values
and varies steeply around the positions of maximum and

FIG. 5. �a� The dimensionless scaling function fvdW �Eqs. �27� a
between the chemically patterned monolayers covering the two subs
� of the pattern for d /�=0.05 and 0.06. �b� Corresponding lateral p
minimum misalignment while the fluctuation-induced force
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varies more smoothly across all shift values. Apart from that,
the qualitative features are the same for both forces. In order
to estimate the lateral van der Waals force we assume that the
particles are closely packed within the monolayer �18�, so
that the areal number density is �A�B�=�3/ �6R2�
�2��AA�BB��−2 /�3 where R=�AA /2 ��BB /2� is the radius of
the A�B� particles forming a triangular lattice. According to
Table I in Ref. �19� typical values are �ij /kB�300 K and
�ij �0.5 nm. For �=200 nm one has Eij /�5�1.5
�10−5 pN/ ��m�2. According to Fig. 5�a� for d /�=0.05 this
implies Flat,ij

vdW�3 pNS/ ��m�2 for the contribution �Eij to the
actual lateral van der Waals force Flat

vdW proportional to E
=EAA−2EAB+EBB. Thus for a suitably chosen constant E,
without compromising the goal of achieving �a=�b /2 �as
used in our calculations�, the lateral van der Waals force can
be quite smaller than 3 pN per area S / ��m�2. We note that in
a medium the interaction strength of the van der Waals force
is even reduced and for a more accurate estimate of the van
der Waals force many-body interactions and the anisotropy
of the material should also be taken into account �20�.

From Fig. 2 one finds, for the same system parameters �
and d considered above and at room temperature, for the
fluctuation-induced lateral force Flat�0.02 pNS/ ��m�2.
Thus the background lateral van der Waals force tends to be
stronger than the nematic fluctuation induced force. How-
ever, for a suitably chosen chemical contrast of the particles
forming the chemical stripes, it appears to be possible to
determine the fluctuation-induced lateral force by measuring
the shear force once with and once without the nematic liq-
uid between the patterned substrates. The ratio of the two
forces for d /�=0.05, �a /�=4, �b /�=8, and E /�5�1.5
�10−5 pN/ ��m�2 as function of � is shown in Fig. 6. It
appears that the fluctuation-induced lateral force becomes
more prominent around � /�=0.25,0.75. From Figs. 2 and
5�a� one notices that both Flat /S and Flat

vdW/S vanish linearly
at � /�=0, 0.5, 1.0 �as �−0.084+0.168� /�� pN/ ��m�2 and
�−33.5+66� /�� pN/ ��m�2 at � /�=0.5, respectively, for
d /�=0.05, E /�5=1.5�10−5 pN/ ��m�2, �=200 nm, and
kBT=4�10−21J� and since the slope of Flat

vdW is much larger
than the corresponding slope of Flat, the ratio Flat /Flat

vdW at
� /�=0,0.5,1.0 is small. From Fig. 6 one should not draw the
conclusion that the lateral fluctuation induced force is at
most half a percent of the corresponding lateral van der
Waals background force. This ratio is inversely proportional

8�� of the lateral force induced by direct van der Waals interactions
s at distance d as a function of the shift � in units of the periodicity
tial Vlat

vdW���= ES
�4 vlat

vdW �Eq. �26��.
nd �2
trate
to E=EAA−2EAB+EBB. Figure 6 corresponds to a parameter
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choice for which E is estimated by an individual Eij and not
by the actual contrast expressed by E, which vanishes for
A=B. Accordingly, for suitable choices of A and B, E can be
significantly smaller than the Eij used in Fig. 6 which then
leads to a significantly larger ratio.

IV. FLUCTUATION-INDUCED NORMAL FORCE

The effect of a periodic anchoring at one substrate, with
the second substrate being homogeneous, on the fluctuation-
induced normal force was studied in Ref. �11�. It turned out
that for the description of the normal force the single pat-
terned substrate can be replaced by a uniform substrate with
an effective anchoring strength, i.e., the force is given by the
force found between two uniform substrates characterized by
their effective anchoring. Depending on the model param-
eters, the normal force is either repulsive or attractive—
corresponding to an effective similar-dissimilar or an effec-
tive similar-similar boundary condition, respectively. In the
present case of two patterned substrates, we have calculated
the normal force numerically �Eq. �16��. Although for the
analysis of the normal force for d
� the effective homoge-
neous surface approximation is expected to hold �21�, we
note that an absent registry between the patterns still leads to
a restoring lateral force �Eq. �20��.

Figure 7 shows the dependence of the normal force Fnorm
on d. For d��a, �b as shown here, the force is attractive and
decays monotonically as a function of d. In this regime, the
anchoring is weak at both substrates so that the effect of the
periodicity is not visible. We note that in this case the
fluctuation-induced normal force �Fig. 7� is about 1000 �100�
times larger than the fluctuation-induced lateral force �Fig. 4�
for �a /�=4�2�. Figure 8, however, shows the behavior of
Fnorm as a function of � in the regime of strong but finite
anchoring d��a ,�b. In this case the normal force is oscilla-
tory and attractive, and its magnitude is comparable with the
fluctuation-induced lateral force �Fig. 9�.

V. SUMMARY AND CONCLUSION

We have calculated the fluctuation-induced forces acting

FIG. 6. The ratio of the fluctuation-induced lateral force Flat and
the lateral van der Waals force Flat

vdW as a function of the shift � in
units of the periodicity � for d /�=0.05, �a /�=4, �b /�=8, E /�5

�1.5�10−5 pN/ ��m�2, and at T=290 K. Flat is more prominent
around � /�=0.25 and 0.75.
on two substrates chemically modulated with period � and
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confining a nematic film of thickness d �Fig. 1�. The sub-
strates are characterized by homeotropic anchoring with al-
ternating extrapolation lengths �a and �b. We have studied
the shear force as a function of the lateral shift � between the
patterns on the substrates and of their separation d. For ��b
−�a � ��a and ��d, the lateral force sinusoidally oscillates
as a function of � /� and decays exponentially with d /� �Eq.
�20��. For stronger contrasts, the lateral force and its corre-
sponding potential have been evaluated numerically �Figs.
2–4�. It turns out that for a suitably chosen chemical contrast

FIG. 7. The fluctuation-induced normal force Fnorm in units of
kBTS /�3 between two periodically patterned substrates as a function
of the film thickness d in units of the periodicity �. The anchoring
on the stripes in terms of the extrapolation lengths is taken to be
�b /�=8 and �a /�=4 �full line�, 2 �dashed line�. For d��a, �b as
shown here the anchoring is weak but finite �5� at both substrates
and the force is attractive. As expected the absolute value of the
amplitude of the force decreases upon decreasing the extrapolation
length. The force depends very weakly on the shift �. Here � /� is
set to 0.3.

FIG. 8. The fluctuation-induced normal force Fnorm in units of
kBTS /�3 between two periodically patterned substrates at distance
d /�=0.45 as function of the shift � in units of the periodicity �. The
anchoring on the stripes in terms of the extrapolation lengths is
taken to be �a /�=0.1 and �b /�=0.3 �triangles�, 0.4 �circles�. For
d��a ,�b as shown here the anchoring is strong but finite at both
substrates and the force is attractive. As expected the absolute value
of the amplitude of the force decreases upon increasing the extrapo-
lation length �5�. The force oscillates as a function of the shift � and

for complete misalignment, i.e., � /�=0.5 the attraction is weakest.
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the fluctuation-induced lateral force is comparable �Fig. 6�
with the background lateral van der Waals force between the
corresponding monolayers on the top and bottom substrates
forming the chemical heterogeneity �Fig. 5�. In order to com-
plete the picture of the forces in the presence of the patterned
substrates we have also calculated numerically the
fluctuation-induced normal forces �Figs. 7 and 8� and found
them to be comparable with the fluctuation-induced lateral
force in the case of strong anchoring �Fig. 9�.

Patterning at small length scales gives rise to rich interfa-
cial phenomena. It opens the possibility of controlling the
morphology of wetting films and generates orientational
transitions �22� which are central to the behavior of structural
forces induced by distortions of the liquid crystal order pa-
rameter. In such cases, in addition to the fluctuation-induced

FIG. 9. Fluctuation-induced normal force Fnorm divided by
fluctuation-induced lateral force Flat as a function of the contrast
�b−�a in units of the periodicity � for �a /�=0.1, d /�=0.45, corre-
sponding to strong but finite anchoring, and � /�=0.25. Fnorm and
Flat are of comparable size.
�13� R. Golestanian and M. Kardar, Phys. Rev. A 58, 1713 �1998�.
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forces, the substrates are subject to liquid-crystalline elastic
forces �3�. Such elastic forces scale with K �Eq. �2�� and are
for large d larger than the fluctuation-induced forces which
scale with kBT. Since for small d the elastic forces scale as
d−0.5 �2� but the fluctuation-induced force as d−3 �5�, the lat-
ter can, however, even dominate for small d. There are no
contributions from the mean value of the director to the elas-
tic force for such model parameters and boundary conditions
for which the director structure is uniform. In Ref. �21� it has
been demonstrated that this uniformity can indeed occur for
suitable combinations of model parameters, even in cases of
competing planar and homeotropic anchoring conditions,
which have not been considered here. This case of varying
anchoring directions leads to the analysis of the pretransi-
tional behavior of the force on approaching the structural
changes as a function of � or d.

Capillary forces due to capillary condensation and the for-
mation of bridge phases �23–25� are other sources for the
structural forces in the vicinity of the nematic-isotropic
phase transition. If the fluid is confined to very narrow slits,
patterning may give rise to capillary bridges of different liq-
uid crystalline order. Under such conditions, it would be in-
teresting to study the stress under the shear strains by shift-
ing the lateral substrate structures out of phase �26� which
might give rise to rather strong lateral forces.

The structural forces as well as the van der Waals forces
are important for predicting the stability, thickness, and op-
tical properties of very thin liquid-crystalline films, so that an
accurate estimate of these forces is essential for technologi-
cal applications. Moreover, lateral forces can be used to align
the parallel substrate structures. For instance, for those
ranges of the model parameters for which the liquid crystal-
line lateral forces are significant, the liquid crystal can be
filled into the slit pore to align the substrate structure and
then be removed.
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